Analyse vectorielle
Guide
Documents
J. Stewart, Analyse, concepts et contextes, vol. 2, DeBoeck Université (2001)
Motivation
Si
est une fonction continue d'un intervalle
dans
,
on définit l'intégrale de
à
de la fonction
:
.
Il y a deux propriétés de l'intégration que l'on voudrait généraliser lorsqu'on se place
dans
ou
:
- Dans le cas où
est positive et
, on peut interpréter
comme une
aire
est l'aire du domaine
défini par
,
:
Ainsi, l'aire du domaine
limité par
le graphe de la fonction
pour
et
dans [0.1,2.6]
et les segments
,
et
est égale à
On a donc relié l'intégrale d'une fonction à une aire, c'est-à-dire à l'intégrale
double
. Cela s'exprimera plus tard comme le théorème de Green :
.
-
On a la formule d'intégration fondamentale
.
Préliminaires
- On peut voir
comme un espace vectoriel sur
. On appelle alors ses éléments des
vecteurs .
Prenez le aléatoire
ou
On peut
additionner des vecteurs ou les multiplier par un scalaire, c'est-à-dire par un réel.
On note un élément de
soit comme un
-uplet
soit on l'écrit dans la base canonique
par exemple pour
,
.
Pour
et
, il est fréquent que l'on note les vecteurs
de la base canonique par
et
. Nous utiliserons les trois notations.
Exercice : espace vectoriel
Tir aux vecteurs
- On peut voir
comme un espace affine
formé de
points .
La notation
avec
un
point et
un vecteur désigne le point translaté de
par le vecteur
.
Ainsi,
dans
,
si
est le point (-1.1, -2, 1.5) et
le vecteur
-1.5 e 1 + (1.8 )e 2 + (0.7 )e 3 ,
est le point (-2.6, -0.2, 2.2).
Si
, on note
.
Un sous-espace affine est
le translaté d'un sous-espace vectoriel (appelé sa direction vectorielle).
Par exemple
,
l'ensemble des points de
vérifiant
est une droite affine. Sa direction vectorielle est d'équation
.
Exercices sur les équations d'un sous-espace affine
Equaffine
et
Equaffine
.
Vous pouvez aussi changer la configuration et faire d'autres types d'exercices.
- L'espace vectoriel
est muni d'une norme euclidienne et d'un produit scalaire
:
si
et
,
alors
.
C'est un
espace euclidien .
Définition
Quelques exercices sur les distances dans l'espace euclidien
-
distance d'une droite à un plan
-
distance d'un plan à un plan
-
distance d'un point à un plan I
-
distance d'un point à un plan II
-
distance entre deux droites I
-
distance entre deux droites II
.
- L'espace affine
est alors muni d'une distance :
et d'une
topologie.
Définition
Les boules ouvertes
sont les sous-ensembles de
de la forme
pour
un point et
un réel
positif.
Un sous-ensemble
de
est dit
ouvert si tout point de
appartient à
une boule ouverte contenue dans
.
Les boules ouvertes sont des ouverts.
On peut donc définir la continuité d'une fonction d'un ouvert
de
dans
.
Exemples
L'ensemble des
tels que
et
n'est pas un ouvert.
regarder le point (0,1/2) par exemple
L'ensemble des
tels que
et
est un ouvert .
Exercice : topologie ( pas encore)
Champ de vecteurs
Champ de vecteurs
Définition
Un champ de vecteurs (ou champ vectoriel)
sur
défini sur un domaine
de
est une fonction de
dans
.
Il est dit continu si
est continu,
si
est
(c'est-à-dire continu et
admettant des dérivées partielles continues).
Ainsi, à un point de
, on associe un vecteur
de
.
Exemple
Dans les champs de vecteurs
représentés graphiquement, les longueurs des vecteurs sont souvent modifiés par
un coefficient de proportionnalité pour des raisons esthétiques. Il est souvent
aussi plus facile de représenter le champ de directions associé, c'est-à-dire de
dessiner des vecteurs unitaires représentant les directions du champ en
oubliant son "intensité" c'est-à-dire sa norme.
Voici les deux représentations du champ donné par
.
.
Représentation graphique d'un champ
Soit
le champ défini par
.
Voici
une représentation de ce champ à droite et la représentation du champ de directions associé à gauche (celui-ci est le champ
défini par
:
Exemples de champ
Exemple
-
Le champ de vecteurs tangents à une courbe dans
; il est donc défini sur la courbe et non sur
.
Dessin
-
Le champ des vecteurs normaux à une surface dans
; il est défini sur cette surface
(attention, on ne peut pas parler du champ de vecteurs tangents à une surface. Pourquoi ?)
-
Le
gradient
-
Les champs associés à des
équations différentielles
ou des
systèmes diffférentiels
.
Ne pas confondre avec un
champ scalaire sur
qui est pour le
mathématicien une fonction d'un domaine de
dans
. Par exemple,
le champ de température est la fonction donnant la température en un point le champ de pression
est la fonction donnant la température en un point.
Exemple
Vous avez rencontré en physique des champs de vitesse
champs de force, des
champs électriques, des
champs magnétiques, des
champs électrostatiques, des champs de vitesse, des
champs gravitationnels. Quelle grandeur physique représente dans chaque cas le
champ ?
Le gradient
Définition
Soit
une fonction de 3 variables. On lui
associe un champ de vecteurs appelé
champ de gradient
et noté grad
ou
:
En posant
,
.
Exercice
Autres notations
- en utilisant la base canonique (
,
,
)
=
-
En physique, on utilise la notation suivante :
,
,
ce qui donne les formules suivantes
dans
dans
ou en mettant les scalaires après les vecteurs contrairement à nos habitudes
dans
dans
.
Pour plus de détails relatifs aux fonctions de plusieurs variables, au gradient et aux courbes de niveau, voir
Doc Fonctions de plusieurs variables
Champ de vecteurs associé à une équation différentielle
Soit
une fonction sur un ouvert
de
.
On considère une équation différentielle
et on lui associe le champ de vecteurs suivant :
à un point
de
,
on associe le vecteur unitaire de direction
. C'est donc le vecteur
.
Si
est une
solution sur un intervalle
, on a
et le vecteur tangent à la courbe d'équation
en un point est
colinéaire au champ de vecteurs associé à l'équation différentielle.
Exemple
Voici le dessin des directions associés à l'équation différentielle
.
Systèmes différentiels
Soit
un système d'équations différentielles. Le champ de vecteurs associé est le champ de vecteurs
(champ de vitesse par exemple).
Une
courbe intégrale est, disons,
une courbe paramétrée
qui est
et qui vérifie
En chaque point, la tangente est de direction le champ de vecteurs
.
On les appelle aussi
lignes de courant : ce sont par
exemple, les trajectoires d'un objet dont le champ de vitesse est le champ de vecteurs
considéré.
Exemple
.
Le champ associé au système différentiel
est donné par
Définition
Une forme linéaire
sur l'espace vectoriel
est une application linéaire de
dans
.
Par exemple, la projection
est une forme linéaire de
, notons-la
.
Toute forme linéaire
est représentée (dans la base usuelle
de
) par une matrice à une ligne et
4 colonnes
et on a
c'est-à-dire
.
Ainsi, toute forme linéaire sur
est combinaison linéaire des
.
Exercice
Vérifier que si
est une forme linéaire sur
,
il existe un vecteur
tel que
pour tout vecteur
de
.
Commencer par des
rappels sur les formes linéaires
avant la définition suivante :
Définition
Une
forme différentielle
(de degré 1) sur un ouvert
de
est la donnée en chaque point
de
d'une forme linéaire
. En coordonnées,
Par exemple pour
, cela s'écrit
Pour
, avec des notations un peu différentes,
Exemple des formes différentielles associées à une fonction
Soit
une fonction de
variables. On lui associe la forme différentielle
de degré 1
Par exemple, pour
,
Pour
,
Si
, on obtient
, si
,
on obtient
.
D'où la notation commode
,
et l'expression plus familière
qu'il faut retenir
.
et lorsqu'il y a
variables,
Pour n=1
La notion (ou notation) si on remplace
par
est la suivante :
à une fonction d'une variable
sur un intervalle
de
,
on associe
-
un "champ de vecteurs" sur
(à valeurs dans
) donné
par
;
-
une forme différentielle de degré 1 sur
notée
.
Le champ
est un champ de gradient
si
est la dérivée d'une fonction
. La forme différentielle associée est alors
, d'où la notation
.
Champs de vecteurs
et
formes différentielles
sont extrêmement liés.
Si
est une forme différentielle sur
, on lui associe le champ de vecteurs
.
En posant
, on a alors symboliquement
.
Par exemple, si
est une fonction sur
,
le champ de vecteurs associé à la forme différentielle
est égal à
et on a
Intégration le long d'une courbe
On désire définir l'analogue de
avec
.
Pour cela on remplace le segment [
] de
par une courbe paramétrée
de
ou de
et
par une forme différentielle
ou par
.
Rappels sur les courbes paramétrées
Définition
Une courbe paramétrée (plane) est une application d'un
intervalle
de
dans
, ce qu'on appelle aussi
fonction vectorielle . Le
paramètre est
, l'image de cette application est formée des points de la courbe.
Autrement dit, si
,
une courbe paramétrée dans
est donnée par
.
On note
l'image de
. Lorsque
est un intervalle fermé borné [a,b], les points extrémités
de
sont les points
et
. La courbe est fermée si
.
On écrit par exemple
| |
|
On ne regardera que des courbes
par morceaux sur un intervalle fermé, c'est-à-dire telles que les
4 fonctions
,
,
,
soient continues et
par morceaux, on appelle une telle courbe un
chemin de
vers
.
Vecteur tangent à une courbe paramétrée
En un point
où les
sont dérivables et tel que les
) ne soient pas tous nuls,
le
vecteur vitesse ou
vecteur tangent
est le vecteur
ou encore
.
Par exemple, pour
, la tangente
à la courbe en
a la représentation paramétrique
pour
, ce qui traduit la relation de colinéarité des vecteurs
et
:
.
Le cercle paramétré par
et son vecteur vitesse
1
Exercice sur la droite tangente à une courbe paramétrée.
Changement de paramètres
On peut changer le paramétrage, c'est-à-dire remplacer
par
où
est une
bijection d'un intervalle
sur
, continue, dérivable,
à dérivée continue et strictement positive .
Prenons
.
La nouvelle courbe paramétrée est donnée par
,
,
,
) avec
,
,
,
pour
. Les points des deux courbes paramétrées
sont les mêmes. Mais le vecteur vitesse n'est pas le même :
.
Nous avons supposé que le changement de paramétrage
est croissant,
ainsi la courbe est "parcourue" dans le même sens de l'extrémité
vers l'extrémité
.
Choix paramétrés
Longueur d'une courbe et abscisse curviligne
Prenez la dimension
aléatoire
ou
Théorème
Soit
une courbe paramétrée dans
par morceaux d'équations paramétrées
,
,
,
,
pour
. La longueur de la courbe est égale à
.
Pour des détails et une démonstration dans le cas de
, voir le document
Doc Longueur et intégrale curviligne
.
Rappelons simplement qu'une abscisse curviligne est un nouveau paramétrage
de la courbe par la longueur définie à partir du paramétrage donné
par
.
Intégrale curviligne d'un champ de vecteurs
Prenez la dimension
aléatoire
ou
Définition
Soit
une courbe paramétrée et
un ouvert contenant
.
Soit
un champ de vecteurs sur
. On définit
l'
intégrale curviligne du champ de vecteurs
,
,
,
)=
+
+
+
le long
de
comme
+
+
+
)
L'intégrale curviligne de
ne
dépend pas du paramétrage de la courbe
, mais
uniquement de l'image
, ce qui
justifiera la notation
.
Elle ne dépend pas non plus du
changement de coordonnées.
Indépendance par rapport au paramétrage
Un autre paramétrage de
est donné par
où
est une bijection,
dérivable, de dérivée non nulle, croissante.
Ce qu'on appelle aussi un
difféomorphisme
conservant l'orientation de la courbe.
Calculons l'intégrale curviligne de
+
+
+
en utilisant le paramétrage
(cas d'un champ de vecteurs sur
)
:
+
+
+
)
+
+
+
)
On fait le changement de variables
: on obtient
+
+
+
)
=
Où est cachée l'utilisation de la croissance de
? La formule de changement de variables est
.
L'écriture
pour
signifie
avec
. Lorsque
est décroissante, l'intervalle
est l'intervalle
. Pour
décroissante, on a donc la formule
.
On déduit de ce calcul que
Théorème
La définition de l'intégrale curviligne a bien un sens, à condition de considérer
le chemin
comme orienté :
"on parcourt la courbe de l'extrémité
vers l'extrémité
".
Changement de coordonnées
Plaçons-nous dans
. Soit
un
changement de coordonnées
,
) de
dans un ouvert
: autrement dit, on se donne une application injective
de
sur un ouvert
(donc
bijective de
sur
),
et telle que
le déterminant de
Jac
soit partout non nul sur
. On dit aussi que
est un
difféomorphisme de
sur
.
Soit
un champ de vecteurs.
On applique le changement de variables
,
:
et
devient dans les coordonnées
=
=
avec
ou encore
Théorème
On a
avec
comme ci-dessus.
Exercice
Que donnent ces formules dans le cas du changement en coordonnées polaires
,
? ne pas chercher à appliquer la formule précédente
mais refaire le calcul dans ce cas particulier.
Qu'en déduit-on lorsque
est de la forme
avec
une fonction de deux variables ?
Intégrale curviligne d'une forme différentielle
Définition
Soit
une courbe paramétrée
et
un ouvert de
contenant
.
Soit
une forme différentielle définie sur
. On définit
l'intégrale (curviligne) de la forme
différentielle
le long du chemin
comme
Autrement dit, on intègre
(c(t)) qui est par définition
entre
et
.
De même
Définition
Soit
une courbe paramétrée
et
un ouvert
de
contenant
.
Soit
+
+
+
+
une forme différentielle définie sur
. On définit
l'intégrale (curviligne) de la forme
différentielle
le long du chemin
comme
+
+
+
+
)
Ainsi, si
est le champ de vecteurs associé à
, l'intégrale curviligne de
le long de la courbe
est la circulation de
le long de la courbe
.
L'intégrale curviligne d'une forme différentielle le long d'une courbe est indépendante du
changement de paramètre croissant
et se comporte bien par
changement de coordonnées
.
Exercice
Exercice
Flux, travail
L'intégrale curviligne d'un champ de vecteurs
le long d'une courbe s'appelle aussi
la circulation le long de la courbe. La circulation de
ne
dépend que de la
composante tangentielle de
à la courbe.
Lorsque le champ vectoriel représente un
champ de forces , on parle de
travail.
Le
flux d'un champ
à travers une courbe
s'exprime aussi
comme une intégrale curviligne, celle du champ
. Ainsi, on a
Flux
En remarquant que
"représente"
un vecteur orthogonal à
(vecteur tangent) et que
forment une base directe, on voit que
le flux de
à travers
ne dépend que de la
composante normale de
à la courbe .
Exercice
Intégration des champs de gradients
Théorème
Soit
un champ de vecteurs
et
une courbe paramétrée
d'extrémités
et
. Alors
.
C'est une généralisation du théorème
pour une fonction d'une variable (la démonstration s'y ramène d'ailleurs).
Démonstration
Démonstration
Faisons la démonstration pour
. On a
(
+
+
+
)
avec
.
D'où la conséquence
Théorème
La circulation d'un champ de gradient le long d'un chemin ne dépend que des
extrémités du chemin.
Exemple
Exemples
Exemple
On considère une attraction proportionnelle à la distance à un point
, appelé centre
d'attraction. Le champ de vecteurs
vérifie
. Ainsi
.
Si
, on a
.
Donc l'intégrale curviligne de
le
long d'un chemin allant d'un point
à un point
ne dépend pas du chemin et vaut
. Autrement dit,
le
travail
effectué pour aller de
à
ne dépend pas du chemin.
Exemple
On considère une attraction inversement proportionnelle à la distance à un point
.
Le champ de vecteurs
vérifie donc
Il est défini sur
.
Si
, le gradient de
est égal à
sur
.
L'intégrale curviligne (le travail) de
le long d'un chemin allant de
à
qui ne passe pas par le point
ne dépend que de
et de
et vaut
.
Caractérisation des champs de gradients
Condition nécessaire
Prenez la dimension aléatoire
Soit
,
,
,
)
un
champ de gradient
sur un ouvert
de
(on dit aussi
champ dérivant d'un potentiel
ou
champ conservatif )
sur un ouvert
de
.
Il existe une fonction
sur
à valeurs dans
telle que
.
Alors on a
En effet, on a
pour
et
compris entre 1 et 4,
et
par le
théorème de Clairaut-Schwarz
Théorème
Soit
une fonction de
variables
qui est de classe
, c'est-à-dire continue et admettant
des dérivées partielles d'ordre 1 et 2 qui sont continues.
Alors, pour tout indice
et
, on a
.
Ainsi, si
, on a les égalités de fonctions
,
,
,
,
,
,
ce qui fait 6
égalités.
On aimerait avoir une réciproque. Mais cela dépend de la forme de l'ouvert.
Condition suffisante pour une boule ouverte
Prenons d'abord pour ouvert une boule ouverte.
Théorème
Si
est une boule ouverte de
,
tout champ de vecteurs
vérifiant
est un champ de gradient.
Démonstration
Le théorème de Green a une application très intéressante
à la mesure de surfaces planes par le biais du
planimètre
.