TVI: Méthode de dichotomie

On considère une fonction f définie sur [ 6.4 ; 6.7 ], strictement croissante et telle que:
f(6.4)=6.9 et f(6.7)=3.1.

Le théorème des valeurs intermédiaires permet d'affirmer que l'équation f(x)=0 admet une solution unique, notée α, sur l'intervalle [ 6.4 ; 6.7 ].

On désire déterminer la valeur de α à 0.1 près par dichotomie.
Quelle valeur de f doit-on calculer? On calcule f en .

Do you confirm?

Exercice not entirely completed. Are you sure you want to submit?
The most recent version

This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press ``Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.