Convexité
Middle school year 6 Générale Spécialité
;
Middle school year 6 Générale Complémentaire
Description
Définition
Le plan est muni d'un repère orthogonal
.
Soit un intervalle de et soit une
fonction définie sur l'intervalle
.
On note la courbe représentative de la fonction dans le repère
.
La fonction est dite convexe sur si et
seulement si pour tous points et de la courbe d'abscisses respectives des réels et de tels que , le segment est situé au-dessus de la courbe sur l'intervalle .
La fonction est dite concave sur si et
seulement si pour tous points et de la courbe d'abscisses respectives des réels et de tels que , le segment est situé au-dessous de la courbe sur l'intervalle .
La fonction définie sur
de courbe représentative est convexe sur .
La fonction définie sur
de courbe représentative est concave sur .
Again
Remarque
Une fonction qui n'est pas convexe sur n'est pas nécessairement
concave sur .
La fonction définie sur
de courbe représentative n'est ni convexe sur ni concave sur
.
Néanmoins, la fonction est concave sur
et convexe
sur .
Again
Théorème
Le plan est muni d'un repère orthogonal
.
Soit un intervalle de et soit une
fonction dérivable sur l'intervalle
.
On note la courbe représentative de la fonction dans le repère
.
La fonction est convexe sur si et
seulement si sa courbe représentative est entièrement située au-dessus de
chacune de ses tangentes.
La fonction est concave sur si et
seulement si sa courbe représentative est entièrement située au-dessous de
chacune de ses tangentes.
La fonction définie sur
de courbe représentative est convexe sur .
Again
Théorème
Soit un intervalle de et soit une
fonction dérivable sur l'intervalle
.
La fonction est convexe sur si et seulement si sa fonction
dérivée est croissante sur
.
La fonction est concave sur si et seulement si sa fonction
dérivée est décroissante sur
.
Soit la fonction définie et dérivable sur
de courbe représentative .
Soit la fonction dérivée de de courbe représentative .
La fonction est concave sur .
La fonction est décroissante sur .
Again
Théorème
Soit un intervalle de et soit une
fonction deux fois dérivable sur l'intervalle
.
La fonction est convexe sur si et seulement si sa fonction
dérivée seconde est positive sur
.
La fonction est concave sur si et seulement si sa fonction
dérivée seconde est négative sur
.
Soit la fonction définie sur
par et de courbe représentative .
Étudier la convexité de f sur .
Éléments de solution
La fonction f est dérivable sur et pour tout réel x de ,.
La fonction est dérivable sur et pour tout réel x de ,.
Le signe de sur est donné par
x
Signe de
On en déduit que la fonction f est concave sur .
Again
Related concepts
Fonction dérivée
Point d'inflexion
Tangente à une courbe
Taux de variation
This page is not in its usual appearance because WIMS is unable to recognize your
web browser.
Please take note that WIMS pages are interactively generated; they are not ordinary
HTML files. They must be used interactively ONLINE. It is useless
for you to gather them through a robot program.
Description: Glossary Plateforme WIMS d'exercices interactifs et gratuits à données aléatoires avec feedback et corrections automatiques de l'enseignement secondaire au supérieur hébergée par le rectorat de l'académie de Versailles