L'élève doit être incité à s'engager dans une recherche mathématique, individuellement ou en équipe, et à développer sa confiance en lui. Il cherche, essaie des pistes, prend le risque de se tromper. Il ne doit pas craindre l'erreur, mais en tirer profit grâce au professeur, qui l'aide à l'identifier, à l'analyser et la comprendre. Ce travail sur l'erreur participe à la construction de ses apprentissages.
Les problèmes proposés aux élèves peuvent être internes aux mathématiques, provenir de l'histoire des mathématiques, être issus des autres disciplines ou du monde réel, en prenant garde que la simple inclusion de références au monde réel ne suffit pas toujours à transformer un exercice de routine en un bon problème. Dans tous les cas, ils doivent être bien conçus et motivants, afin de développer les connaissances et compétences mathématiques du programme.
Le professeur veille à établir un équilibre entre divers temps de l'apprentissage :Les élèves rencontrent les nombres réels comme abscisses des points d'une droite graduée, et plus largement comme nombres permettant de mesurer des grandeurs. Ils les comparent, ils apprennent qu'il existe des nombres irrationnels, les encadrent par des nombres décimaux ou rationnels. Ils comprennent que calculatrices et logiciels font des calculs approchés. En liaison avec un approfondissement de l'étude des multiples et diviseurs, ils consolident la pratique du calcul sur les fractions.
La mise en évidence de la puissance du calcul littéral comme outil de résolution de problème, déjà rencontrée au collège, reste un objectif important. L'élève doit être confronté à des situations, internes ou externes aux mathématiques, dans lesquelles une modélisation est nécessaire, faisant intervenir variables, expressions algébriques, équations ou inéquations. Les situations internes sont l'occasion de réactiver les connaissances du collège, notamment sur les thèmes « Espace et géométrie » et « Grandeurs et mesures » (longueurs, aires, volumes, angles, vitesses). Il convient d'équilibrer la formation, d'une part en proposant des applications variées et significatives des notions et techniques étudiées, d'autre part, en veillant à l'acquisition des automatismes, par la pratique fréquente de calculs routiniers. On réactivera notamment les formes décimales exactes de , , et des fractions pour dans , et arrondies de et .
Les élèves découvrent les vecteurs, qui sont un outil efficace pour démontrer en géométrie et pour modéliser en physique. Ils les manipulent dans le plan muni d'un repère orthonormé. Ils approfondissent leurs connaissances sur les configurations du plan, disposent de nouveaux outils pour analyser des figures géométriques, résoudre des problèmes. Ils étudient les équations de droite, font le lien entre représentations géométrique, algébrique, et fonctionnelle.
La géométrie développe des capacités de représentation. Il importe de s'appuyer sur des figures, selon des modalités diverses (tracé à main levée, schéma, figure soignée, utilisation de logiciels). Dans le cadre de la résolution de problèmes, l'utilisation d'un logiciel de géométrie dynamique par les élèves leur donne une plus grande autonomie et encourage leur prise d'initiative.
Le programme se place dans le cadre de la géométrie plane. Cependant, le professeur peut proposer des activités mobilisant les notions de géométrie dans l'espace vues au collège (sections, aires, volumes) enrichies de celles étudiées en seconde (vecteurs).
Il convient de mettre en valeur l'intervention de la géométrie dans les autres parties du programme, notamment « Nombres et calculs » et « Fonctions ».
Dans cette section, le plan est muni d'un repère orthonormé.
En liaison avec la partie « Algorithmique et programmation », on définit la notion d'échantillon. L'objectif est de faire percevoir, sous une forme expérimentale, la loi des grands nombres, la fluctuation d'échantillonnage et le principe de l'estimation d'une probabilité par une fréquenceobservée sur un échantillon.
Un langage de programmation simple d'usage est nécessaire pour l'écriture des programmes informatiques. Le langage choisi est Python, langage interprété, concis, largement répandu et pouvant fonctionner dans une diversité d'environnements. Les élèves sont entraînés à passer du langage naturel à Python et inversement.
L'algorithmique a une place naturelle dans tous les champs des mathématiques et les problèmes ainsi traités doivent être en relation avec les autres parties du programme (fonctions, géométrie, statistiques et probabilité, logique) mais aussi avec les autres disciplines ou la vie courante.
À l'occasion de l'écriture d'algorithmes et de petits programmes, il convient de transmettre aux élèves l'exigence d'exactitude et de rigueur, et de les entrainer aux pratiques systématiques de vérification et de contrôle. En programmant, les élèves revisitent les notions de variables et de fonctions sous une forme différente.
L'apprentissage des notations mathématiques et de la logique est transversal à tous les chapitres du programme. Aussi, il importe d'y travailler d'abord dans des contextes où ils se présentent naturellement, puis de prévoir des temps où les concepts et types de raisonnement sont étudiés, après avoir été rencontrés plusieurs fois en situation.
Les élèves doivent connaître les notions d'élément d'un ensemble, de sous-ensemble, d'appartenance et d'inclusion, de réunion, d'intersection et de complémentaire, et savoir utiliser les symboles de base correspondant : , , , , ainsi que la notation des ensembles de nombres et des intervalles. Ils rencontrent également la notion de couple. Pour le complémentaire d'un sous-ensemble de , on utilise la notation des probabilités , ou la notation .
Les élèves apprennent en situation à :Veuillez noter que les pages WIMS sont générées interactivement; elles ne sont pas des fichiers HTML ordinaires. Elles doivent être utilisées interactivement EN LIGNE. Il est inutile pour vous de les ramasser par un programme robot.